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Abstract A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric
Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)
campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical
velocity observations are presented using cumulative frequency histograms and weighted mean profiles to
provide insights in a manner suitable for global climate model scale comparisons (spatial domains from
20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime
controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, and
mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous
studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft
area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in
magnitude near 8 km. Downdrafts are observed to bemost frequent below the freezing level, with downdraft
area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified
according to environmental controls. These results indicate stronger vertical velocity profile behaviors under
higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in
convective area fraction and mass flux profiles are most pronounced when retrievals are segregated
according to Amazonian wet and dry season conditions. During this deployment, wet season regimes
favored higher domainmass flux profiles, attributed tomore frequent convection that offsets weaker average
convective cell vertical velocities.

1. Introduction

Understanding deep convective clouds and simulating their impacts is a major challenge from cloud resol-
ving model (CRM) to global climate model (GCM) scales. At the GCM scales, convective parameterizations
impact the simulation of the global energy balance and cumulus cloud radiative properties while also
influencing the strength of the larger-scale atmospheric circulations that these models explicitly resolve
[Del Genio 2012]. Therefore, an inability to adequately represent the lifecycle and impacts of deep convective
clouds is a primary driver for GCM uncertainty in the prediction of climate change. For the foreseeable future,
model reliance on convective parameterization schemes motivates many observational studies that explore
new technologies to improve our insights into cloud processes and cloud-aerosol interactions [e.g.,May et al.,
2008; Jakob, 2010; Jensen et al., 2016; Wang et al., 2016]. Better understanding of deep convective lifecycle
within undersampled tropical convective regions is often emphasized, since convective parameterization
feedbacks over tropical regions have illustrated significant and far-reaching sensitivity for GCM predictive
capabilities [e.g., Yin et al., 2013; Hagos et al., 2016].

There is demand for newer observational constraints to better isolate the connections between deep cloud
humidity, entrainment, and microphysical treatments [e.g., Milbrandt and Yau, 2005; Jensen and Del Genio,
2006; Del Genio et al., 2012]. However, since deep convective clouds operate over a wide range of scales, it
is difficult for any single observational platform to inform on convective lifecycle from detailed microphysical
process scales to larger-scale cloud cover and energetic implications. Practical limitations have sparked
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emphasis on multisensor, multiscale “supersite” activities to better bridge the gaps between cloud process
studies and larger-scale feedbacks [e.g., Stokes and Schwartz, 1994; Mather and Voyles, 2013]. One notable
recommendation has been to improve the observations of convective vertical velocity and mass flux over
larger domains, necessary to evaluate traditional mass flux-driven ensemble GCM parameterization [e.g.,
Arakawa and Schubert, 1974]. These observations are also useful in the development of current and future
GCM parameterizations that better differentiate organized convection lifecycle through additional cumulus
complexity [e.g., Donner et al., 2001; Storer et al., 2015].

Traditionally, vertical velocity and mass flux estimates within deeper convection have been collected
using narrow, high-resolution measurements obtained directly by aircraft [e.g., Byers and Braham, 1948;
Lenschow, 1976; LeMone and Zipser, 1980; Anderson et al., 2005]. Although aircraft studies provide reliable
measurements, the cost and practical hazards for flight operations in deeper convective cells limit the
availability of these data sets. Recently, radar wind profilers (RWP) have emerged as a less expensive and safer
alternative to aircraft studies [e.g., Battan and Theiss, 1970; May and Rajopadhyaya, 1999; Williams, 2012;
Giangrande et al., 2013; Schumacher et al., 2015; Kumjian et al., 2016]. Recent profiler upgrades have enabled
the collection of vertical velocity measurements at sufficient temporal and vertical resolution for convective
core studies. These profiler retrievals report retrieval uncertainty to within 1–2m s�1 [e.g., Heymsfield et al.,
2010]. Nevertheless, fixed soda-straw wind profilers do not target convective cells (as might a directed aircraft
field campaign) and lack the spatial domain sampling of scanning weather radar to conveniently align with
CRM or GCM model outputs.

To make an appropriate use of RWPs for GCM evaluation, a key question is “To what extent are the estimated
time mean properties (that wind profilers routinely collect) representative of area mean quantities (i.e., those
of interest to the GCM community)?”GCM outputs represent ensemble cloud properties occupying large spa-
tiotemporal domains (i.e., equal or greater than 1 h in time, 20 km horizontally). For practical considerations,
previous studies have found it simpler to report the statistical, aggregated properties from subsets of easily
identifiable convective “cores,” e.g., those cores having stronger coherent updraft or downdraft signatures
[e.g., LeMone and Zipser, 1980; Zipser and LeMone, 1980]. These efforts are complementary, since the statistics
from a population of cores is still of interest to larger-scale models [e.g., Donner, 1993]. However, relying
exclusively on these methods may fall short for conventional GCM-type mass flux definitions and evaluation
that aggregate all convective cloud air motions to within a particular spatiotemporal domain.

Recently, Kumar et al. [2015] proposed a statistical RWP-based solution aimed at retrieving mass flux profiles
around Darwin, Australia, better aligned for evaluating ensemble GCM simulations. The efforts broke from
traditional aircraft or profiler core definitions, instead requiring a long profiler data set with surveillance radar
support to ensure statistical alignment between point profiler and scanning radar domain sampling. Our
study follows similar motivations to Kumar et al. [2015], using an extended profiler data set to build on our
knowledge of deep convective vertical velocity and mass flux properties. As in that study, we document
the vertical structure of convective mass flux, the relative role of convective area fraction and vertical velocity
onmass flux, and the sensitivity of vertical velocity andmass flux profiles to changes in thermodynamics con-
ditions. Efforts along these lines may act as a pure observational complement to help anchor other recent
GCM convective parameterization environmental forcing and closure studies [e.g., Suhas and Zhang, 2015].

This study makes use of an extended convective data set collected within the Amazon basin during the
Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment [Martin et al., 2015,
2016]. The Amazon basin features prolific rain producing conditions under relatively “wet” (December to
March) and “dry” (June through September) regimes, spanning a variety of cloud and precipitation types.
The regimes and their transitions are related to the differences in the thermodynamic forcing for convection
controlled by surface heat fluxes and large-scale moisture transport [e.g., Li and Fu, 2004; Fu and Li, 2004].
The breadth of cloud and precipitation frequency over the Amazon region, coupled with current GCMmodel
inability to adequately represent convective cloud features over tropical areas, makes an extended Amazon
deployment an important asset for understanding and improvingGCMconvective parameterization and asso-
ciated feedbacks [e.g.,Williams et al., 2002; Richter and Xie, 2008]. As part of GoAmazon2014/5, theAtmospheric
Radiation Measurement (ARM) Mobile Facility (AMF) [Miller et al., 2016] collected a unique set of observations
near Manacapuru, Brazil, a site known to experience both the pristine condition of its locale, as well as the
effects of theManaus, Brazil,mega city pollutionplume. TheAMFwas equipped to capture a continuous record
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of column cloud properties from multiple radars, while frequent radiosonde launches help characterize con-
vective forcing [e.g., Xie et al., 2015]. The AMF site is under the umbrella of the distributed System for the
Protection of Amazonia (SIPAM) S band (3 GHz) conventional Doppler radar network that gives additional con-
text for convective events summarized in this study [Martin et al., 2015].

The paper is outlined as follows. An overview of the GoAmazon2014/5 data set is presented in section 2.
Methods to retrieve environmental parameters and GCM-scale vertical velocity, convective area fraction,
and mass flux profiles are summarized in section 3. Results and breakdowns for this GoAmazon2014/5 data
set, including activities to isolate the role of environmental forcing on these profiles, are presented in
section 4. An extended discussion of the environmental breakdowns of convective core properties is found
in section 5, and our key findings are summarized in section 6.

2. The GoAmazon2014/5 Data Set

As part of GoAmazon2014/5, the ARM AMF was positioned near Manacapuru, Brazil (Figure 1, herein T3 site).
The data set includes near-continuous profiling observations over a period from March 2014 through
December 2015. This study emphasizes cumulus congestus to deeper convective cloud properties observa-
ble by the RWP. These clouds typically have reflectivity factor Z values greater than 10 dBZ and are associated
with much of the precipitation observed over the Amazon basin. We analyze convective properties from over
200 days of RWP observations that collected at least 5min of measureable convective precipitation over T3.
Convective precipitation is designated using a RWP-based echo classification approach described in
section 2.1. These convective precipitation observations occur within the hours we define as “when convec-
tion is present” for the area fraction and mass flux calculations performed by this study.

Figure 1. Map showing the location of the ARM AMF site near Manacapuru, Brazil, during GoAmazon2014/5. The AMF site
is under the umbrella of the SIPAM conventional radar near Manaus, Brazil (dashed line 110 km radius range ring). Boxes
represent the domains used in section 3.3 to test RWP sampling representativeness.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025303

GIANGRANDE ET AL. VERTICAL VELOCITY GOAMAZON2014/5 12,893



Gauge-based rainfall accumulations
coupled with the RWP during
GoAmazon2014/5 indicate that convec-
tive cloud echoes occupy 35% of the
available RWP observations (when any
rain is measured) and contribute
roughly 70% of the total rainfall accu-
mulation (>3000mm total data set
precipitation). Wet and dry season pre-
cipitation at T3 adhered to established
local diurnal cycle controls that are
highlighted by the quasi-regular timing
for early afternoon convection between

1500 and 1800UTC (local noon—3 pm, Figure 2). Larger-scale thermodynamical shifts between the wet and
dry seasons promote additional complexity, including initiation of propagating mesoscale convective
systems that introduce overnight widespread stratiform rain contributions. However, most widespread
precipitation contributions over T3 are limited, observed during transitional periods and sea breeze front
intrusions into the basin [Romatschke and Houze, 2010; Burleyson et al., 2016].

2.1. The Radar Data Set

The ARM 1290MHz UHF RWP is the primary instrument for retrievals. This RWP was reconfigured for precipi-
tation modes similar to an S band radar profiler [e.g., Atmospheric Radiation Measurement, ARM Climate
Research Facility, 2009;Williams, 2012; Giangrande et al., 2013; Tridon et al., 2013]. The beamwidth is large (6°,
e.g., ~ 1 km at 10 km above ground level (agl)); however, vertical and temporal resolutions (200m and 5 s,
respectively) are reasonable for convective studies. RWP reflectivity factor measurements and vertical
velocity retrieval examples for a 20 March 2014 event are shown in Figure 3. A collocated W band ARM
Cloud Radar [e.g., Atmospheric Radiation Measurement, ARM Climate Research Facility, 2005; Giangrande
et al., 2010, 2012] is consulted to help ensure we are mitigating clutter in RWP data sets associated with
Bragg echoes.

The closest surveillance SIPAM radar was located 67.8 km northeast of T3. This radar provides grazing angle
coverage useful to generate composite constant altitude low-level gridded reflectivity maps (e.g., constant
altitude plan position indicators, CAPPIs) for convective area fraction estimates over domains comparable in
size to a GCM gridbox. An overlapping SIPAM data set was available from March 2014 to May 2015, suffi-
cient to establish the statistical representativeness of T3 column observations (section 3.3). The SIPAM radar
data (1.8° beam width) were gridded to a Cartesian coordinate grid with horizontal and vertical resolution
of 2 km and 0.5 km, respectively. A texture-based classification method [Steiner et al., 1995] was applied to
the 2.5 km altitude reflectivity CAPPI, updated every 12min, to designate convective echoes. The 1-hourly
SIPAM convective area fractions for several representative GCM gridbox sizes were then estimated
(domains as outlined on Figure 1). Finally, the use of SIPAM data was limited to a 110 km radius from the
radar (dashed circle, Figure 1). Beyond this range, data collected during certain months were occasionally
unreliable. Thus, the largest 100 km domain box was moved eastward by 25 km to accommodate
this change.

2.2. Disdrometer Data Set

Five minute aggregate drop size distribution (DSD) measurements are obtained from a Parsivel unit using
standard ARM drop censoring and processing techniques [e.g., Atmospheric Radiation Measurement, ARM
Climate Research Facility, 2006; Tokay et al., 2013; Giangrande et al., 2014]. The disdrometer provided a routine
calibration reference for the RWP Z estimates (to within 1–2 dB), as required for power law relationships used
to estimate the hydrometeor fall speed contribution to the retrieved RWP vertical motion estimate (discussed
in section 3). Rainfall speed power law relationships were also evaluated with Parsivel DSDs, using an assump-
tion that the near-surface ambient vertical air motion is negligible. Those efforts follow a Steiner [1991] rela-
tionship form, Vt= aZb, where Vt is in (m s�1), Z is in linear units (mm6m�3), the “b” coefficient is fixed at 0.098,
and the “a” coefficient is estimated as 2.65m s�1 when using the convective rain DSDs collected
during GoAmazon2014/5.

Figure 2. Diurnal cycle of precipitation over the T3 site as estimated by
the collocated tipping bucket rain gauge.
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2.3. Radiosondes

Radiosondes were launched over T3 at regular 6 h intervals. Basic thermodynamic processing was performed
following Jensen et al. [2015] to estimate common thermodynamic/environment quantities of interest
including convective available potential energy (CAPE) and convective inhibition (CIN). Based on the diurnal
cycle of precipitation (Figure 2), the closest preconvective environment sounding was typically obtained from
the launches between 1100 and 1200UTC (approximately 8 A.M. LT) and used to estimate the environmental
forcing controls. If unavailable, an earlier 0500–0600UTC (approximately 2 A.M. LT) sounding was inserted.
Figure 4 plots summary frequency histograms for the surface-based CAPE (mean~ 1768 J kg�1 K�1), CIN
(mean~�60 J kg�1 K�1), and low-level (0–5 km) mean relative humidity RH (mean ~ 76%) for our data set.
Solid lines on Figure 4 indicate the median data set values, while dashed lines represent one standard
deviation from the data set mean. The standard deviations for CAPE, CIN, and RH are found as
887 J kg�1 K�1, 45 J kg�1 K�1, and 9%, respectively. As the mean and median values are similar, mean values
provide the primary reference point used to segregate favorable from unfavorable thermodynamical
conditions in section 4. Distributions of the most unstable CAPE (mean~ 1963 J kg�1 K�1) and least stable
CIN (mean~�36 J kg�1 K�1) are also estimated but not emphasized in this study owing to similar relative
distributions and standard deviations for data set breakdowns.

3. Methodology and Additional Considerations

Although scanning radar networks are suitable to identify convection over large domains, these networks
typically do not prioritize placement and scanning useful to routinely retrieve vertical wind estimates.
Meanwhile, profilers capture vertical velocity within an atmospheric column but must sample over long per-
iods to yield useful convective information on updraft and downdraft distributions. One goal is to estimate
convective vertical velocity and mass flux profiles that represent the composite of the vertical velocities
inside all convective clouds within a representative GCM-scale grid. Kumar et al. [2015] argued that this could
be accomplished using profilers by assuming that the ensemble averages performed on a long time series of
profiler observations (e.g., many 3 h samples) should approximate the ensembles drawn from convective
properties collected over large spatiotemporal domains (e.g., 60 × 60 km). By coupling a profiler site with a

Figure 3. Example (a) reflectivity factor Z measurements and (b) vertical velocity retrievals from the 20 March 2014 event
during GoAmazon2014/5.
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surveillance radar, Kumar et al. [2015]
attempted to give confidence for this
assumption by finding that the ensem-
ble average point convective fractions
over a Darwin profiler were similar to
those from the larger scanning radar
horizontal domain.

3.1. Profiler Estimates of Vertical
Velocity in Convection

Air motions retrievals in precipitation
are performed following Giangrande
et al. [2013] using minor modifications
for tropical Amazon thunderstorms
(e.g., Figure 3). These retrievals follow
two basic steps. First, echo classification
is used to identify the RWP convective
columns of interest. Since RWP mean
Doppler velocity measurements reflect
contributions from ambient air motions
and particle fall speeds, the second step
is to account for these hydrometeor fall
speed contributions by using power
law relations and freezing level height
to estimate the vertical air motion at a
given RWP range gate.

Our standard RWP preprocessing
includes a fuzzy-logic echo classification
following Giangrande et al. [2013], simi-
lar to methods previously described by
Geerts and Dawei [2004] and Lerach
et al. [2010]. Vertical columns are
designated as “convection,” including
the extension into weaker echo regions
aloft (where radar returns may drop
below traditional radar-based convec-
tive echo thresholds). Columns with
traditional radar bright band signatures
[e.g., Fabry and Zawadzki, 1995] are
excluded from classification as convec-
tion. However, additional checks are
performed on the remaining columns
to include any nonbright band column
having a maximum Z> 35 dBZ and/or
an absolute mean Doppler velocity
value above the freezing level> 5m s�1

as convection. Periphery anvil or adja-
cent cloud columns that do not exhibit
coherent precipitation signatures to
the surface are not included.

Below the freezing level, rainfall
speed adjustments follow relations
obtained from the local disdrometer

Figure 4. Frequency histograms for the surface-based CAPE, CIN, and low
level (0–5 km) mean relative humidity RH (%) for event days in this study.
Solid lines indicate the median values. Dashed lines indicate one standard
deviation from the data set mean.
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measurements (section 2.2). Unlike previous efforts [Giangrande et al., 2013], hail contamination above or
below the freezing level is not considered as a significant source of retrieval uncertainty during
GoAmazon2014/5. Instead, most retrieval uncertainty (1–2m s�1) is attributed to the power law fall speed
relations used to correct for graupel and/or mixed phase media in convective cores above the freezing level,
and the conditions for which those relationships are applicable. From previous Oklahoma studies in
Giangrande et al. [2013], a theoretical power law relationship was established using Oklahoma-matched

model outputs (having variable graupel density) as Vt ¼ 2:2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 Z dBZ½ ��33ð Þ=10½ �� �q

, where Vt is in (m s�1).

However, sensitivity testing for this fall speed relation during the tropical Amazon deployment identified that

a modification to Vt ¼ 2:3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 Z dBZ½ ��30ð Þ=10½ �� �q

better aligned with a longer-term statistical profile expecta-

tion for decreasing downdraft frequency with altitude.

Physically, the adjustments to Giangrande et al. [2013] methods described above may be interpreted as
follows: At very small radar reflectivity Z< 25 dBZ associated with smaller- and/or low-density particles, the
change in predicted fall speed is negligible. As Z increases in elevated cores, this change (to within
1m s�1) would be consistent with Amazon storms indicative of a higher propensity of small, faster-falling
mixed-phase particles (25< Z< 35 dBZ). Since this retrieval method assumes mixed-phase media does not
fall faster than liquid having the same Z, cores with Z> 35 dBZ at this crossover point revert to the rainfall
speed behavior. For Z> 35 dBZ, the differences are also to within 1m s�1, the change favoring lower density,
slower falling particles for continental Oklahoma cores having approximate 35< Z< 45 dBZ.

To help illustrate the appropriateness for statistical mixed-phase relationship changes due to natural variabil-
ity in tropical regimes, one option is to compare these Amazon relationships against dual-frequency wind
profiler retrievals performed from Darwin (50MHz and 920MHz, as in Protat and Williams [2011] and
Williams [2012]). Unlike single-frequency RWP-based GoAmazon2014/5 retrievals, dual-frequency retrievals
from Darwin directly measure the vertical air motion (using the 50MHz profiler) and the mean Doppler
velocity (using the 920MHz profiler). While the strengths and weaknesses for single- versus dual-frequency
methods are beyond the scope of this study, one strength of the dual-frequency approach is that statistical
hydrometeor fall speed behaviors can be estimated as a residual. Figure 5 depicts one example for the dual-
frequency retrieval approach applied to a tropical, weak convective Darwin monsoon event. The frequency
scatterplot in Figure 5 highlights fall speed retrievals from 5.5 km to 7.5 km (adjusted to surface) against
the associated bulk 920MHz RWP Z estimate. The Amazon convective power law fall speed relationships
for graupel (red line, Z< 35 dBZ) and rain (dashed line, Z> 35 dBZ) are overlaid. For this case (and many
within the Darwin tropical monsoon), the Amazon curves we adopt are well matched to tropical Darwin con-
vective core observations. For additional reference, a widespread stratiform dry aggregate snow matched
subset Vt= 0.37Z0.19 (blue line) is also observed and in line with nonspherical ice crystal expectations [e.g.,
Hong, 2007] yet distinct from convective core fall speed behaviors. Although supportive for these changes
for tropical Amazon studies, these activities require future investigation. For instance, stronger updraft con-
vective Darwin “break”monsoonal events do not exhibit similar agreement to larger values of Z> 30 dBZ and
more closely follow continental Oklahoma relationships (e.g., presence of lower density ice particles).

3.2. GCM-Scale Mass Flux Ensemble Profile Estimation

Following Kumar et al. [2015], convective area fraction and vertical velocity profiles from a single column can
be combined to calculate a mass fluxMc (kg s

�1m�2). The mass fluxMc follows a traditional GCM-type defini-
tion that aggregates all convective clouds within a particular-sized domain:

Mc ¼ ρσuυu þ ρσdυd; (1)

where ρ is the air density (kgm�3) and σu is the horizontal area fraction covered by updraft cores in the grid-
box (dimensionless, ratio of the “updraft” area to the total domain area), υu is the mean updraft velocity
(m s�1), and σd and υd are similar quantities for the area fraction and mean velocity of the downdraft cores,
respectively. In equation (1), mean profiles may be computed from the RWP over temporal aggregation
intervals deemed appropriate for GCM-type comparisons (section 3.3). All convective regions designated
by the RWP (i.e., |v|⩾ 0m s�1, no thresholds) are classified as an updraft or downdraft. By avoiding the use
of core length or significance thresholds, Kumar et al. [2015] argued these composite profile retrievals to
be in better alignment with GCM outputs.
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As reported by Kumar et al. [2015], initial sensitivity testing revealed that mean mass flux profiles calculated
using equation (1) were relatively robust to minor modifications in convective echo classification and/or core
significance thresholds. As an example, if a more stringent convective echo classification were implemented,
this would lead to a decrease in the fractional convective area. We also find that this decrease was roughly
compensated in mean mass flux profile behaviors (section 4) by an increase in the mean velocity over the
remaining regions. One basic interpretation for this may be tied to velocities in convective core regions.
This behavior fits with core velocities that vary smoothly from peak “core” intensity out to the peripheries
(e.g., triangular updraft plume assumptions).

3.3. Representativeness of RWP Sampling to GCM Gridbox Sizes

As with Kumar et al. [2015], this study must determine whether the time mean RWP properties and ensemble
averages are approximately representative of area mean quantities for GoAmazon2014/5. One basic
approach that follows the Kumar et al. [2015] study is to compare average ensemble convective cloud proper-
ties as sampled by the SIPAM radar, capable of capturing point-to-larger-scale convective area coverage.
Testing is performed over the T3 RWP site that is isolated and removed from several lower level contaminants
(e.g., ground clutter and blockages). Figure 6 plots a summary SIPAM convective occurrence as derived from
2.5 km agl CAPPI measurements. This plot summarizes the wet season months (December to March) at the
most active 3 h interval (15–18UTC). The example highlights that convection is often most frequent over land
surfaces (removed from underlying river influences, consistent with Burleyson et al. [2016]) and that it occurs
at a frequency between 2% and 7% during the 3 h interval most favorable to convective development.

Figure 5. Results from the 18 February 2006 event as viewed by the Darwin, Australia, dual-frequency profiler. (top)
920MHz Reflectivity, (middle) surface-adjusted hydrometeor fall speed retrievals, and the (bottom) coupled cumulative
frequency scatterplots for Z and fall speed drawn from the observations between 5.5 km to 7.5 km. Solid red line in Figure 5
(bottom) is the graupel/mixed-phase power law relationship applied for the Amazon in this study. Dashed red line is the
rain power law relation as matched using the Amazon Parsivel data set for convective cells. Blue line represents a matched
“aggregate snow” relation as observed in regions outside convective cores.
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Deriving GCM grid-scale properties
from vertical profiles is a challenging
task [e.g., Illingworth et al., 2007]. One
proxy is to reconstruct a 2-D vertical
cross section using the RWP by includ-
ing all profiles sampled over a time
interval that corresponds to the GCM
grid length. In order to do so, the propa-
gation speed of the convective cells is
used to “convert” this grid length to a
time span. The main assumption is then
that the obtained set of profiles is statis-
tically representative of the whole
volume of the GCM grid scale. An aver-
age propagation speed of 5m s�1 is
assumed for Amazon convective cells,
as estimated using SIPAM cell tracking
algorithms such as those presented in
Vila et al. [2008]. Based on this average
propagation speed, a 1 h time-height
RWP column behavior (e.g., the mean
convective area fraction profile) maps
to a spatial grid domain of approxi-

mately 20 km. In a similar fashion, a 3 h (6 h) column-time interval would roughly translate to a spatial grid
domain of 60 km (120). Since 20 km to 100 km grids reflect conventional to next-generation GCM grid resolu-
tion, initial focus is on the representativeness of 1 h, 3 h, and 6 h RWP column behaviors and the compositing
therein. These tests cover a wide range of possible options when approximating the spatiotemporal averages
collected from larger horizontal domains.

Average convective area fractions for five different SIPAM spatiotemporal scales are tested over the grid-
boxes depicted on Figure 6. The horizontal scales we compare include point (native 2 km grid), 10 km,
30 km, 50 km, and 100 km. We include only the 1 h, 3 h, and 6 h intervals that have at least 60% of the avail-
able SIPAM volume scans (approximately 6000 one hour intervals from SIPAM) to ensure fidelity for spatio-
temporal behaviors from point-to-spatial scales. When ensemble averaging over the entire SIPAM record
across these five domain options and according to each time interval (1 h, 3 h, and 6 h), the mean SIPAM con-
vective area fractions converge at approximately 2% (not shown). The result should not be surprising, since
the basic interpretation is that the campaign experiences a convective rainfall event every few days, with the
typical convective event lasting a few hours. Since most hours in the data set do not experience convective
precipitation, the sequential ensemble averaging encourages all options to converge at a very small convec-
tive fraction (e.g., averaging a large number of zero values/zero padding). Kumar et al. [2015] drew from this
logic to infer that ensemble convective profiles drawn from a lengthy set of 3-hourly profile averaging sam-
ples would be a good approximation for the average convective profile behavior observed to within a GCM-
size gridbox.

However, the situations important to GCM model evaluation are often those drawn from specific intervals
wherein convection initiates and is present over a GCM-like domain. To better inform on the representative-
ness of ensemble profiles, we can isolate the properties from 1 h and longer intervals according to the
instances that a large GCM-like scale domain (~100 km) observes convection (independent of a RWP-point
location “hit”). For this test, we consider only 1 h and longer intervals that featured a minimum 1% convective
area fraction over the 100 km spatial domain scale (e.g., Table 1). Since convection is uncommon, this
removes 70% of the previous data set. Retaining only the independent samples with convection in the vici-
nity of the T3 site results is an increase in the ensemble average convective area fraction, to approximately
6%. Area fraction is typically higher over the smaller, RWP-like domains. From Table 1, a modest (~1–2%)
agreement persists when performing these SIPAM tests up to convective area fractions over 5–10% of the
equivalent 100 km domain. Average convective area fractions deviate by more than 3–5% above those levels,

Figure 6. Mean convective area frequency of occurrence as designated
by SIPAM radar during GoAmazon2014/5 wet season events (December
to March) for the 3 h window between 15 and 18 UTC. Blocked radials are
masked and not included in fractional area calculations.
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as also constrained by the limited number of events having convective area fractions exceeding 10% over the
100 km domain.

Many differences reported in Table 1 are allowable, since shorter temporal column behaviors including point-
column 1h average ensembles are only anticipated to be relevant to inform at approximate 20–30 km
horizontal domain scales (or 3 h averages to 50–60 km scales, etc.). One may consider reversing the tests that
were performed to confirm whether substantial precipitation over T3 would be consistent with substantial
precipitation over the larger spatiotemporal domains; for example, we checked the consistency between
the domains for events where the convective area fraction over the T3 (point) exceeded 10%. Once again,
SIPAM ensemble averages were roughly aligned at appropriate scales.

Kumar et al. [2015] support the ensemble averaging of large populations of individual 3 h profiler samples to
generate representative GCM-scale profiles. Therefore, it is instructive to consider the quality and natural
variability found in that baseline (instantaneous) point-column sampling as compared to larger field-of-view
(FOV) SIPAM samples. Similar to radar-based column cloud fraction studies [e.g., Berg and Stull, 2002], hourly
convective area fraction averages obtained from the single-point (2 km) or limited area (10 km) SIPAM
records are highly correlated (Pearson correlation coefficient r~ 0.9) to the comparable hourly samples
obtained over the largest matched (e.g., 30 km) SIPAM spatiotemporal domains. Comparisons of the instan-
taneous samples suggest low Bias (to within 1%) and a root-mean-square error RMSE (approximately 7%)
associated with sampling (noise) and physical process limitations. When we consider lengthier 3 h and 6 h
point-column comparisons against associated lengthier spatiotemporal FOVs (e.g., 50 km and 100 km), the
correlations are lower (r~0.75 and r~0.65 for 3 h and 6 h, respectively), while the RMSE also decreases
(6.1% and 4.5%, respectively). Since many Amazon convective events do not persist for longer than a few
hours, the improvement in RMSE at the lengthier scales is attributed to some zero padding. Overall, these
RMSE behaviors for convective area fraction imply that a relatively large number of samples would need to
be averaged to ensure a low composite RMSE behavior (e.g., to within 1–2% convective area fraction).
Random sampling from this data set (to avoid seasonal, sequential similarities) conservatively places this
number of hourly samples on the order of 100. The number of required samples is reduced for longer sample
windows, e.g., aided by zero padding.

At a glance, the testing follows previous examples by Kumar et al. [2015] and motivates that the T3 RWP loca-
tion may be possibly representative when considering ensemble statistical behaviors. Although we initially
considered from 1 h, 20 km×20 km scales up to 6 h, 120 km×120 km ensemble averages, there are concerns
for using lengthier RWP samples as representative of larger domains. This is shown in the reduction of the
sample correlations as discussed above and may include additional diurnal factors. Therefore, this study
emphasizes 1 h and 3 h properties that are found to be in modest alignment and similar to the previous
Darwin study. As in Figure 1, the T3 site is located at the confluence of the Amazon and Rio Negro Rivers, a
region of strong underlying moisture [e.g., Romatschke and Houze, 2010]. Testing indicated bias favoring
higher convective area fractions over the smaller, more local T3 domains. This may highlight an additional
concern that the T3 location is a relative focal point for enhanced convection (coverage). The result aligns
well with satellite-based deep convective cloud occurrence maps as in Burleyson et al. [2016]. Therefore, mass

Table 1. Average SIPAMData Set Convective Area Fractional Coverage for 1 h to 6 h Spatiotemporal Intervals Contingent
on Coverage Thresholds for When Convection Is Present Over the Larger 100 km Domain

1% Area Coverage (100 km Domain) Point/2 km Area Coverage (%) 10 km 30 km 50 km 100 km

1 h 6.6 6.6 5.95 5.7 5.9
3 h 5.9 5.9 5.3 5.0 5.2
6 h 4.9 4.9 4.4 4.2 4.4

5% Area Coverage (100 km Domain) Point/2 km Area Coverage % 10 km 30 km 50 km 100 km

1 h 12.4 12.4 11.3 10.7 10.6
3 h 11.6 11.5 10.3 9.8 9.6
6 h 9.6 9.8 8.8 8.4 8.1

10% Area Coverage (100 km Domain) Point/2 kmArea Coverage % 10 km 30 km 50 km 100 km

1 h 20.3 20.2 18.6 17.3 16.0
3 h 19.0 18.9 17.4 16.5 15.0
6 h 15.5 14.9 13.5 13.5 13.0
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flux profiles as estimated by this studymay also be enhanced as compared to the expectations over the larger
Amazon basin.

4. Observational Breakdowns From the GoAmazon2014/5 Campaign

Ensemble mean convective profile behaviors and environmental separations are estimated from the RWP
data set of 200 convective event days. The data set includes approximately 532 single hours (1 h) and 414
3-hourly periods (3 h) matching the when convection is present 5min rainfall criteria. Overall, the Amazon
events include an approximate 30% contribution from possible congestus clouds, defined as RWP convective
columns having an echo top height (ETH)< 8 km [e.g., Jensen and Del Genio, 2006]. For the relative environ-
mental forcing breakdowns in subsequent sections, only the results obtained from the 3 h, 60 km ensemble
mean profiles are shown. This choice is made for simplicity, since the results at the 1 h scale are qualitatively
similar and scale with area fraction. Data sets associated with these relative 3 h breakdowns are described in
Table 2. The 3 h scale is also the closest matched to the previous Kumar et al. [2015] study for comparison
purposes with Darwin observations.

4.1. Summary Amazon Convective Vertical Velocity, Area Fraction, and Mass Flux Profiles

Figure 7 plots data set summary 1 h and 3 h mean vertical profiles that translate to GCM scales of approxi-
mately 20 km and 60 km when assuming a 5m s�1 cell propagation. Vertical velocity profiles in these plots
represent a weighted-average behavior consistent with previous vertical velocity observational studies.
Since any 1 h or 3 h window is not guaranteed to observe both updrafts and downdrafts, these profiles are
weighted by the total number of velocity observations in the data set at a given altitude, not an ensemble
average that considers each 1 h or 3 h sample equally important. Thus, there should be no significant differ-
ence between the profiles calculated at different scales. Qualitatively, vertical velocity profiles and maximum
velocity properties in Figure 7 (top row) are similar to those found in previous studies [e.g., May and
Rajopadhyaya, 1999; Giangrande et al., 2013]. Vertical velocity profiles for updrafts (red lines, positive) and
downdrafts (blue lines, negative) increase with height, with peak magnitudes above 10 km. Observed
maximum velocity values did not exceed 20m s�1. The overall convective profiles (black lines) are skewed
toward updrafts at higher altitudes. Mean velocity magnitudes are lower than many previous studies [e.g.,
LeMone and Zipser, 1980; Anderson et al., 2005], but this is expected since those efforts draw profile properties
only from cores meeting stringent significance thresholds.

For an aggregated vertical velocity depiction that better displays the spread of observed instantaneous velo-
cities, a normalized cumulative velocity frequency with altitude display (CFAD) [e.g., Yuter and Houze, 1995] is
plotted for the RWP data set (Figure 8a). Overlaid on this plot are the median (solid), 90th (dashed) and 95th
(plus symbol) percentile velocity value profiles for the updrafts (positive) and downdrafts (negative). An
advantage with CFAD depictions is that these normalized frequency observations are model scale indepen-
dent. Again, we observe CFADs favoring more frequent and intense updrafts over downdrafts to higher

Table 2. The 2 Year GoAmazon2014/5 Data Set Frequency of Convective Occurrence for 3 h Average Properties,
Separated According To Environmental and Regime Conditions

Condition # of 3 h Samples Subset<Mean> Values

CAPE> 1770 J kg�1 K�1 217 2450 J kg�1 K�1

CAPE< 1770 J kg�1 K�1 197 1075 J kg�1 K�1

CIN>�60 J kg�1 K�1 245 �30 J kg�1 K�1

CIN<�60 J kg�1 K�1 169 �104 J kg�1 K�1

RH [0–5 km]> 77% 237 84%
RH [0–5 km]< 77% 177 69%
Dry season, Jun–Sept 103 CAPE: 1900 J kg�1 K�1

CIN: �74 J kg�1 K�1

RH: 70%
Wet season, Dec–Mar 154 CAPE: 1500 J kg�1 K�1

CIN: �58 J kg�1 K�1

RH: 79%
Total, 3 h events 414 CAPE: 1768 J kg�1 K�1

CIN: �60 J kg�1 K�1

RH: 76%
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altitudes. However, Figure 8 also highlights one motivation for improving longer-term velocity observational
records. Longer data sets allow further control over these depictions for factors such as similar ETH conditions
(as in Figure 8b, e.g., average ETH> 12 km). From Figures 8a and 8b, we observe that themedian vertical velo-
city profile is similar in magnitude and shape between the larger sampling and deeper clouds, as important
for conventional mass flux estimates. However, increases in the 95th percentile magnitudes and other distri-
bution changes at the higher altitudes within the deeper clouds may be of increasing interest to future GCM
convective parameterization alternatives.

Figure 7 (middle row) plots the ensemble mean convective area fraction. The area fractions for the Amazon
storms indicates a downward tendency from 30% average convective area coverage for the 1 h intervals

Figure 7. The (left column) 1 h and (right column) 3 h (top row) vertical velocity, (middle row) convective area fraction, and
(bottom row) mass flux profiles for the GoAmazon2014/5 data set. Black lines represent ensemble mean properties, while
red lines represent updraft properties and blue lines represent downdraft properties. Maximum velocities given by plus
symbols. Dashed lines on the 3 h ensembles reflect the ensemble mean Darwin behaviors from Kumar et al. [2015].
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when convection is present to approximately 14% coverage over the 3 h interval averages when convection
is present. The profile shapes are qualitatively similar for updraft, downdraft, and total behaviors. Updraft area
and updraft occurrence peak at the midlevels, whereas maximum downdraft area and maximum occurrence
is at the lower altitudes. Updrafts occupy more area observed at all heights> 2 km. Total convective area
fraction (updrafts and downdrafts) decreases with increasing altitude owing to less frequent observations
for the deeper cumulus clouds. One practical consideration (if comparing ensemble profiles to model ensem-
ble behaviors) is that our definitions for including an RWP event in the ensemble averaging are important to
the minimum convective area fraction we resolve. As before, this approach includes all event windows
having 5min of convective echoes to ensure we sample convection. For the 1 h scales, this implies an 8%
minimum fractional area coverage. However, the criterion translates to a lower minimum (<3%) coverage
requirement if aligning with ensemble model outputs at 3 h, 60 km scales.

Following equation (1), ensemble mean mass flux profiles are shown in Figure 7 (bottom row). The Amazon
ensemble mass flux profiles increase from cloud base to a peak value near 8 km. The mean profiles are
dominated by updrafts, with the exception at the lowest levels. For the 1 h domain-scale properties in
Figure 7 (bottom row, left), ensemble mass flux profiles report similar profile shapes, but magnitudes that
are approximately doubled those from the 3 h scale in Figure 7 (bottom row, right). Note that these properties
scale with the differences in convective area fraction as observed in Figure 7 (middle row) that are also
approximately doubled.

For reference to previous studies, the 3 h column in Figure 7 overlays mean profiles from the comparable 3 h
observations over Darwin (adapted with permission from Kumar et al. [2015]). Note that since the Amazon
vertical velocity profiles roughly overlap with those calculated for Darwin profiles in Kumar et al. [2015]
having similar extended data set weighted mean averaging, these Darwin behaviors are not plotted in the
top panel. Amazon and Darwin however indicate qualitatively similar convective area fraction profile shapes,
with the ensemble Amazon convective area fractions observed to be lower until the upper levels. The ensem-
ble mean mass flux profiles for Darwin are also overlaid, with the Amazon profiles reporting stronger mean
mass flux to higher altitudes and profiles that peak at a higher relative altitude. This result implies stronger
vertical velocities for Amazon storms, which may seem inconsistent with the limited contrasts we find
between Darwin and Amazon weighted mean velocity profiles. Recall that those similarities may not be
representative (unknown breakdown of events in the Darwin sampling), while contrasts may be difficult to
observe when comparing only mean or median velocity profiles dominated by weaker velocities (as in
Figure 8). Similarly, mass flux profiles give equal weight to each 3 h sample and are not dominated by samples
that carry additional RWP observations.

Figure 8. Normalized cumulative frequency histograms (CFADs) of vertical velocity for the GoAmazon2014/5 data set.
Solid, dashed, and plus lines represent median, 90th and 95th percentile values. (a) Plot containing all convective vertical
velocity instances. (b) Plot containing only those sample windows having mean echo top heights greater than 12 km.
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4.2. Relative Mass Flux Profile Breakdowns According To Environmental Forcing
4.2.1. Role of CAPE on Mass Flux Ensemble Mean Profiles
Figure 9 (left column) displays ensemble mean profile breakdowns contingent on stronger (solid lines) and
weaker (dashed lines) CAPE conditions (Table 2). These conditions are separated by the mean data set
CAPE value when convection is present ~ 1768 J kg�1 K�1 (e.g., Figure 4a). Our use of “strong/weak” terminol-
ogy for CAPE values is a relative, as all CAPE values for this data set are associated with convection. The
average CAPE for the samples collected above the data set mean value was 2450 J kg�1 K�1, while this value
was 1075 J kg�1 K�1 for the samples below the data set mean CAPE. The updraft mass flux profiles (Figure 9,
bottom row left) deviate at midlevel altitudes, with the net updraft mass flux profile similar or slightly

Figure 9. As in Figure 7 but for 3-hourly properties segregated according to the mean data set (left column) CAPE (1768 J kg�1 K�1), (middle column) CIN
(�60 J kg�1 K�1), and (right column) low-level RH (76%) values. Stronger/moist conditions are represented by solid lines; weaker/drier conditions are represented
by dashed lines.
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enhanced under the stronger CAPE conditions to most levels below 10 km. Profile behavior reverses
above 10 km for this data set, showing stronger upward vertical motions and mass flux for the weaker
CAPE conditions.

To better interpret mass flux profiles and help constrain convective configurations that potentially attempt to
match these behaviors, it is important to consult relative area fraction and vertical velocity breakdowns. First,
total convective area fractions are lower (~13%) under higher CAPE conditions to all levels. This is mostly
attributed to changes in updraft area, not downdraft areas, since the downdraft area is similar or slightly
elevated under stronger CAPE conditions. We note that downdraft frequency is in reference to convective
downdrafts only, and our definitions ignore widespread downward mass flux associated with stratiform
regions. Since mass flux is the product of area fraction and velocity, this indicates that the associated similar
or stronger mean updraft mass flux profiles observed to 10 km under heightened CAPE conditions are likely
achieved by stronger updrafts (fewer, but stronger). Thus, stronger vertical motions observed to 10 kmwould
be anticipated, although this is not immediately apparent from our use of weighted mean updraft profiles in
Figure 9. Above 10 km, we observe stronger weighted mean updraft velocity profiles for relatively weaker
CAPE conditions. This interpretation is straightforward, since stronger updraft velocities drive higher mass
flux profile estimates (for similar convective area fraction). As following convective area fraction profiles, con-
vective observations (predominantly updrafts) peak around 6 km and decrease rapidly above 10 km. Thus,
additional uncertainty in profile observations to higher altitudes may be expected based on the limited num-
ber of samples (e.g., less than 30% of the observations are available above 12 km as compared with 6 km).

Since weighted mean vertical velocity profiles are dominated by the large number of small velocity values
sampled by the RWP to lower altitudes, and possible sampling from a limited number of stronger events
to higher altitudes, it is informative to consult the changes in CFAD behaviors. The difference according to
stronger and weaker CAPE conditions is plotted along Figure 10 (left). From this difference plot, it is better
shown that stronger CAPE regimes favor more diverse and stronger velocity distributions to higher altitudes
below 10 km. Moreover, weaker CAPE conditions (blue) have the more pronounced distribution peaks
confined to a narrower, slightly upward skewed vertical velocity distribution. Above 10 km, the narrow peak
remains, and we observe evidence for a transition to stronger updrafts under relatively weaker CAPE
conditions. Above 12 km, updrafts are favored under weaker CAPE conditions; however, the spread in
CFAD velocity signatures may support our suggestion that data set sampling above 12 km is limited.
4.2.2. Role of CIN on Mass Flux Ensemble Mean Profiles
Profile behaviors are also segregated according to stronger (solid lines) and weaker (dashed lines) CIN
conditions based on the mean data set value ~�60 J kg�1 K�1 (Figure 9, middle column). The average CIN
for the samples collected above the data set mean value was �103 J kg�1 K�1, while this value was

Figure 10. CFAD difference plots, for behaviors segregated according to CAPE, CIN, and low-level RH conditions, as based on data setmean values (as also in Figure 9).
Red colors and/or positive values indicate that stronger/moister conditions are more frequently observed; blue colors and/or negative values indicate that weaker/
drier conditions are more frequent.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025303

GIANGRANDE ET AL. VERTICAL VELOCITY GOAMAZON2014/5 12,905



�30 J kg�1 K�1 for the samples col-
lected below our data set mean CIN.
Weaker, or smaller negative CIN condi-
tions, exhibit higher total and updraft
area fractions and possibly encourage
stronger mean updraft vertical veloci-
ties. Those factors support the observed
increases in convective mass flux pro-
files under weaker CIN conditions.
Mass flux profiles also possibly suggest
the favorable role for deeper storms
under weaker CIN conditions, as based
on the more pronounced peak location
in mass flux profiles. As following the
previous CAPE breakdowns, Figure 10
(middle) plots a CFAD difference plot
corresponding to these CIN regimes
(similar scales). Unlike the previous
CAPE comparisons, contrasts in velocity
and area fraction profiles under differ-
ent CIN conditions are less conclusive;
stronger CIN is apparently linked with
more diverse convective downdrafts
(although mean convective downdraft
area fraction and mass flux are nomin-
ally similar), whereas weaker CIN is also
linked with stronger and more diverse
updrafts with mass flux peaked to
higher altitudes.
4.2.3. Role of Low-Level (0 km–5 km)
Relative Humidity on Mass Flux
Ensemble Mean Profiles
Profiles in Figure 9 (right column) are
segregated according to the mean data
set value when convection is present for
an average low-level RH (lowest 5 km,
76%). The average low-level RH for the
samples collected above this data set
mean value was 84%, while the value
was 69% for the samples below the data
set mean. Moist low-level moisture
conditions (solid lines) are associated
with increases in convective area frac-
tions and in the ensemble mean mass
flux profile. Vertical velocity weighted
mean profiles do not give a clear indica-
tion whether updraft or downdraft
mean velocities are enhanced under

Figure 11. As in Figures 7 and 9 but segre-
gated according to traditional wet season
(December to March, solid lines) and dry
season (June to September, dashed lines)
regime breakdowns.
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moist/drier conditions, although a net
upward motion seems favorable under
moist conditions. However, the differ-
ence in CFADs constructed for low-level
RH breakdowns (Figure 10, right) indi-
cates that the drier conditions favor
stronger and more diverse downdrafts,
with some hints toward stronger
updrafts, to deeper heights. The down-
drafts and associated frequency are
likely associated with the weak sugges-
tions in Figure 9 for stronger downdraft
mass flux profile behaviors under drier
conditions to deeper heights. Overall,
the mass flux profile properties in
Figure 9 seem to be driven by differ-
ences in the updraft area fraction.
4.2.4. Wet and Dry Season Regime
Breakdowns on Mass Flux Ensemble
Mean Profiles
Since the annual cycles for several envir-
onmental quantities of interest dis-
cussed in previous sections are often
coupled, it is prudent to explore profile
breakdowns according to traditional
Amazonian wet and dry season regimes
(Figure 11). Wet season profiles during

deeper convective events (solid lines) typically blend modest CAPE (mean~ 1500 J kg�1 K�1), weaker CIN
(mean~�58 J kg�1 K�1), and higher low-level moisture conditions (mean~ 79%) between December and
March. Dry season profiles (dashed lines) reflect when convection is present between June and
September, conditions favoring higher CAPE (mean~ 1900 J kg�1 K�1), albeit reduced low-level moisture
(mean~ 70%) and stronger CIN (mean~�74 J kg�1 K�1). From Figure 11, the most striking difference
between the profiles is found with the substantially larger convective updraft area fraction under wet season
conditions (Figure 11, middle). These differences translate to a factor of 2 increase for wet season average
mass flux profiles (Figure 11, bottom). Dry season profiles reflect lower profile peak altitudes in area fraction
and mass flux, which may indicate some increased relative contributions from cumulus congestus.

The CFAD difference between wet and dry season vertical velocity breakdowns is also provided in Figure 12.
Dry season events illustrate broader velocity distributions, suggesting overall stronger velocities when
convection is present. These observations are most reminiscent of CAPE breakdowns in Figure 10, intuitive
since the dry season events are typically associated with higher CAPE magnitudes on days when convection
is present. Wet season events show a much narrower distribution based on normalized frequency; however,
they engulf the tails of the distribution that include the strongest vertical velocities observed for this data set
(organized transitional events in March as in Figure 3, or following Machado et al. [2004]).

4.3. Relative Mass Flux Profile Breakdowns According To Echo Top Height

Approximately one third of the data set is associated with convective columns that register an ETH< 8 km.
Since cloud frequency of occurrence in time and convective area fraction represents similar quantities, the
mass flux profiles for “congestus” clouds defined based on simple ETH thresholds would be approximately
half those from deeper convection, provided that the vertical velocity behaviors were similar. As from
Figure 13, we find that mass flux profiles for these congestus (dashed lines) are roughly half the values found
for deeper clouds (solid lines) at the heights where both sets of clouds are available. One interpretation is that
mean congestus updrafts are not substantially weaker at these altitudes, perhaps in contrast to findings from
Schumacher et al. [2015]. However, it is likely that simple ETH threshold methods may also be partially

Figure 12. CFAD difference plot as in Figure 10 but for wet and dry
season regimes. Red colors indicate more frequent wet season
behaviors, whereas blue colors correspond to more frequent dry season
observations.
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influenced by catching only the periph-
eries (chording) of deeper clouds, or not
effective at isolating congestus from
growing deep cumulus cloud behaviors.
Unlike deeper convective clouds that
indicate a substantial downdraft area
fraction exceeding updraft fractions to
lower altitudes, relative area fractions
occupied by congestus downdrafts do
not exceed that of updrafts to any
altitude. This offers partial support
that the chording of deeper clouds
(those having developed convective
downdrafts) is not a significant source
of uncertainty.

5. Interpretation of Amazon
Ensemble Profile Behaviors

The results from the previous sections
align with many observations from the
Darwin profiler studies performed by
Kumar et al. [2015]. Although the
Amazon convection indicates relatively
smaller convective area fractions than
those found from previous Darwin
studies, the stronger mass flux profile
magnitudes suggest that these smaller
area fractions must be compensated
by stronger vertical air motions for
the Amazon storms (e.g., Figure 7).
Nonetheless, the velocities are in line
with previous Amazon expectations
and weaker than typical for continental
convective storms [e.g., Anderson et al.,
2005; Giangrande et al., 2013], with
90th and 95th percentile values
(Figure 8) typically not exceeding
10m s�1. Accordingly, these peak verti-
cal velocities would typically not be suf-
ficient to support significant storm
electrification [e.g., Zipser and Lutz,
1994]. Interpretation and intercompari-
son with Darwin ensemble mean beha-
viors are challenging. One reason is
because the previous Darwin study
combined contributions from Active
(widespread weaker convection) and
Break (isolated, strong convection)

Figure 13. As in Figure 7 but breakdowns
segregated according to echo top height
values greater than 8 km (solid lines) and less
than 8 km (dashed lines).
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monsoonal regimes [e.g., Pope et al., 2009; Giangrande et al., 2014]. Consulting the subsequent Darwin scan-
ning radar-based effort in Kumar et al. [2016], differences in estimated mass flux profiles between these
regimes may be substantial (continental versus marine controls). Specifically, break monsoon regime storms
associated with higher CAPE and CIN (having stronger vertical velocities) report reduced convective area
fraction leading to overall lower average mass flux behaviors. Overall, these considerations highlight the
importance for identifying the role of thermodynamic conditions or seasonal regime controls prior to aggre-
gating, averaging, or interpreting ensemble mean profiles for model evaluation.

Nevertheless, thermodynamic and regime breakdowns add several important clues in line with previous
Darwin efforts. Stronger CAPE suggests more intense vertical velocities, as directly viewed using CFAD differ-
ence fields (Figure 10, to approximately 10 km), or indirectly based reduced mean updraft fractions resulting
in higher mean mass flux profiles (e.g., Figure 9). For downdrafts, the results are less pronounced; while velo-
cities appear similarly enhanced and diverse according to CFAD differences, we observe only modest differ-
ences in mean downdraft area and downdraft mass flux profiles. Consulting CIN breakdowns, CIN values
closer to zero when convection is present (Figure 9) are associated with additional mass flux peaked at higher
altitudes, perhaps owing to additional convective activity and/or reduced frequency for shallower convective
clouds reflected in these mean profiles. It should be noted that the stronger (more negative) CIN CFADs seem
to also favor more diversity and stronger downdrafts to deeper altitudes (as with stronger CAPE). This result
may seem counterintuitive; however, CAPE and CIN are independent parameters in these depictions. For the
Amazon, relatively strong CIN is often associated with relatively stronger CAPE during the dry season—this
dry regime may tend to inhibit weaker congestus “competition” [e.g., Fu et al., 1999; Machado et al., 2004]
but begin to promote the deepest convective storms when evapotranspiration increases and added low-
level moisture reduces CIN. Transitional months have already been previously identified as most active for
storm electrification, and we also find these months associated with the highest updraft speeds [e.g.,
Williams et al., 2002; Machado et al., 2004; Albrecht et al., 2011]. This may offer partial explanation for some
diversity in updraft and downdraft behaviors as attributed to our composite, isolated CIN and CAPE condi-
tional breakdowns (e.g., transitional storms as those most associated with the strongest vertical motions
above 10 km found in Figures 9 and 10).

Along with CAPE and CIN results, moist low-level RH conditions also favor higher convective area fraction and
enhanced mass flux profiles when convection is present. However, downdraft mass flux profiles are relatively
heightened under drier low-level RH conditions. This behavior was observed by Kumar et al. [2015] and inter-
preted as drier conditions compensating for less prolific convection by promoting, fewer stronger storms to
deeper altitudes (enhanced entrainment also encouraging stronger downdrafts). Although we do not
observe a dramatic preference toward stronger updrafts (transitional regimes perhaps favoring increasing
moisture), CFADs in Figure 10 support arguments for stronger, more diverse downdrafts to higher altitudes
that typically would accompany strong updrafts to those altitudes.

Moving to the traditional Amazon wet and dry season regime breakdowns (e.g., Figures 11 and 12) that cou-
ple regional scale CAPE, CIN and RH factors, the most pronounced discrepancies in observed ensemble pro-
files are driven by noticeable shifts in the convective area fraction. This may be interpreted as wet season
months promoting more regular or larger coverage for convection, linked to seasonal changes that act to
lower CIN. Interestingly, dry season events indicate the stronger, more diverse storm vertical velocities when
convection is present (Figure 12). This may be interpreted that the average storm is potentially stronger when
convection is present, e.g., higher average CAPE that also offsets stronger than average CIN. Higher CIN and
lower low-level moisture could also be coupled in that conditions that promote fewer clouds and may pro-
mote more incoming solar radiation. This may also help promote larger land-surface contrasts such that
the boundary layer air becomes more buoyant and contributing to stronger updrafts.

Additional attempts were also considered to segregate the GoAmazon2014/5 data set into ensemble mean
profiles according to the upper and lower standard deviation values for CAPE, CIN, and low-level RH. One
alternative was to explore basic correlations between the thermodynamic quantities of interest and velocity
or mass flux profile values (as in other conventional GCM efforts) [e.g., Suhas and Zhang, 2015]. Unfortunately,
those breakdowns typically reflected insufficient sample populations or required larger increments of the
thermodynamic quantities (e.g., CAPE bins in 1000 J kg�1 K�1 increments) to generate representative profiles
with confidence (peaked distributions as in Figure 4). Amazon wet and dry season regime multiparameter
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cross coupling also undermines the
utility for those correlations. Sharper
CAPE separations (e.g., upper standard
deviation population, 3225 J kg�1 K�1,
minus lower, 485 J kg�1 K�1; fewer than
100 samples in each) viewed in terms
of vertical velocity CFAD differences
(Figure 14) clearly demonstrate more
pronounced enhancements than
mean CFAD separations (Figure 10).
Nevertheless, since the largest CAPE
values are associated with Amazon dry
season conditions having reduced
low-level RH, one would also observe
stronger velocity behaviors and corre-
lations with reduced low-level RH.
Overall, we recommended avoiding
such correlation-based checks using
RWP or similar observations until data
collection to within wet or dry regime
conditions could be better sampled.

Finally, it is important to discuss that
the profile properties found in this
manuscript reflect an ensemble domain
convective condition that spans
convective cloud lifecycle (initiation,

mature, and decay phases). It is known that vertically pointing radars may miss, chord, and/or poorly capture
any particular convective cell; however, average convective fractions and properties are suggested to be
roughly similar over smaller to larger domains for Amazon convection. Previous profiling studies have proven
that on longer-term ensemble averaging, chording of cylindrical convective cells implies that the statistical
time-length (and therefore area coverage) for the clouds captured by profiling devices will be biased low
(~22% undersampling) [e.g., Jorgensen et al., 1985; Borque et al., 2014]. This is unavoidable, but our compar-
isons between RWP temporal, point, and areal radar spatiotemporal scanning properties in section 2 suggest
the RWP performs comparably to scanning radars that would not face this scrutiny. One fair criticism for
chording, when coupled with additional beam filling issues to higher altitudes, is related to the likelihood
the RWP will statistically sample the strongest peak vertical velocity magnitudes to within updraft cores with
a correct frequency. Since we can be certain that the RWP will undersample and/or smear the centers of the
convective cores (e.g.,>1 km beam width at 10 km), it also follows that the RWP will undersample peak “sub-
volume” core magnitudes. Nevertheless, the underrepresentation of the strongest cores is a known sampling
bias for other vertical velocity observations including aircraft measurements and multi-Doppler variational
retrieval methods.

6. Summary

Our study makes use of an extended profiler data set from a 2 year Amazon basin deployment to help
improve insights into convective vertical velocity, area fraction, and mass flux profiles. There is no one-size-
fits-all solution toward improving GCM convective parameterization development. However, the observa-
tions of convective vertical velocity and mass flux over larger domains potentially offer one necessary
constraint closer to the process level that GCM parameterizations are attempting to represent for evaluating
mass flux-driven conventional GCM parameterizations and/or developing new GCM convective parameteri-
zations [e.g., Storer et al., 2015]. Our motivation is to present RWP column observations, when paired with
justification from scanning radar data sets, in a manner suitable to multiple GCM convective parameterization
audiences. Given the nature of the GoAmazon2014/5 data set, this necessitates emphasizing lengthier
ensemble vertical velocity and mass flux profile depictions for determining whether models are providing

Figure 14. CFAD difference plot for CAPE as in Figure 10, now segregated
according to the samples found one standard deviation above (stronger
CAPE) and below (weaker CAPE) the data set mean. Deeper red colors
indicate relatively more frequent observations during very strong CAPE
conditions, whereas deeper blue colors correspond to more frequent
observations during very weak CAPE conditions.
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reasonable results and if those results vary with the larger-scale environment in a plausible manner. The
overall findings on the vertical structure of convective mass flux, the relative role of convective area fraction
and velocity on mass flux, and the sensitivity of mass flux profiles to changes in thermodynamic quantities of
interest are consistent with previous profiler studies. A summary of the key findings is as follows:

1. Our results indicate qualitatively similar ensemble average mass flux profile behaviors and magnitudes to
the previous results for ensemblemean tropical Darwin convective cloud studies at similar 3 h, 60 km-type
spatiotemporal scales.

2. Updrafts and downdrafts are found to increase in magnitude with height to the midlevels (6–10 km,
contingent on cloud top), consistent with all previous profiling and aircraft studies (updraft maximums
to 20m s�1). The updraft mass flux also increases with height, while net mass flux profiles peak in magni-
tude and frequency above 8 km.

3. Downdrafts are the most frequent at low levels, and downdraft frequency generally decreases monotoni-
cally with height (with or without adjustments for fall speed behaviors).

4. Approximately one third of the convective area fraction we observe with the RWP is associated with
cumulus congestus having ETH< 8 km. For this data set, this also implied that congestus was associated
with substantial mass flux for altitudes less than 8 km.

5. When considering various environmental controls when convection is present. stronger CAPE forcing
conditions are associated with more intense vertical motions that lead to increases in mass flux profiles,
despite lower convective area fraction. Segregating according to CIN controls, weaker CIN was associated
with larger convective area fractions and increases in mass flux profiles. For low-level RH breakdowns,
higher moisture conditions were associated with higher convective area fractions and higher net mass
flux profiles.

6. Under traditional wet/dry season regime breakdowns, modest CAPE and low-level moisture with wea-
kened CIN during the wet season tends to promote substantially higher area fraction leading to enhanced
mass flux profile behaviors. The strongest storm vertical velocities for these data sets were observed
during the transition months (e.g., March and October) that may not register as stronger CAPE based
on the definitions in this study. Dry season storms when convection was present registered as substan-
tially stronger than the typical convective storm observed during the wet season.
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